Data Platform Libs
- Canonical
- Databases
Channel | Revision | Published | Runs on |
---|---|---|---|
latest/stable | 81 | 19 Nov 2024 | |
latest/edge | 82 | 04 Dec 2024 |
juju deploy data-platform-libs
Deploy universal operators easily with Juju, the Universal Operator Lifecycle Manager.
Platform:
charms.data_platform_libs.v0.data_models
-
- Last updated 25 Aug 2023
- Revision Library version 0.4
Library to provide simple API for promoting typed, validated and structured dataclass in charms.
Dict-like data structure are often used in charms. They are used for config, action parameters and databag. This library aims at providing simple API for using pydantic BaseModel-derived class in charms, in order to enhance:
- Validation, by embedding custom business logic to validate single parameters or even have validators that acts across different fields
- Parsing, by loading data into pydantic object we can both allow for other types (e.g. float) to be used in configuration/parameters as well as specify even nested complex objects for databags
- Static typing checks, by moving from dict-like object to classes with typed-annotated properties, that can be statically checked using mypy to ensure that the code is correct.
Pydantic models can be used on:
- Charm Configuration (as defined in config.yaml)
- Actions parameters (as defined in actions.yaml)
- Application/Unit Databag Information (thus making it more structured and encoded)
Creating models
Any data-structure can be modeled using dataclasses instead of dict-like objects (e.g. storing config, action parameters and databags). Within pydantic, we can define dataclasses that provides also parsing and validation on standard dataclass implementation:
from charms.data_platform_libs.v0.data_models import BaseConfigModel
class MyConfig(BaseConfigModel):
my_key: int
@validator("my_key")
def is_lower_than_100(cls, v: int):
if v > 100:
raise ValueError("Too high")
This should allow to collapse both parsing and validation as the dataclass object is parsed and created:
dataclass = MyConfig(my_key="1")
dataclass.my_key # this returns 1 (int)
dataclass["my_key"] # this returns 1 (int)
dataclass = MyConfig(my_key="102") # this returns a ValueError("Too High")
Charm Configuration Model
Using the class above, we can implement parsing and validation of configuration by simply
extending our charms using the TypedCharmBase
class, as shown below.
class MyCharm(TypedCharmBase[MyConfig]):
config_type = MyConfig
# everywhere in the code you will have config property already parsed and validate
def my_method(self):
self.config: MyConfig
Action parameters
In order to parse action parameters, we can use a decorator to be applied to action event callbacks, as shown below.
@validate_params(PullActionModel)
def _pull_site_action(
self, event: ActionEvent,
params: Optional[Union[PullActionModel, ValidationError]] = None
):
if isinstance(params, ValidationError):
# handle errors
else:
# do stuff
Note that this changes the signature of the callbacks by adding an extra parameter with the parsed
counterpart of the event.params
dict-like field. If validation fails, we return (not throw!) the
exception, to be handled (or raised) in the callback.
Databag
In order to parse databag fields, we define a decorator to be applied to base relation event callbacks.
@parse_relation_data(app_model=AppDataModel, unit_model=UnitDataModel)
def _on_cluster_relation_joined(
self, event: RelationEvent,
app_data: Optional[Union[AppDataModel, ValidationError]] = None,
unit_data: Optional[Union[UnitDataModel, ValidationError]] = None
) -> None:
...
The parameters app_data
and unit_data
refers to the databag of the entity which fired the
RelationEvent.
When we want to access to a relation databag outsides of an action, it can be useful also to compact multiple databags into a single object (if there are no conflicting fields), e.g.
class ProviderDataBag(BaseClass):
provider_key: str
class RequirerDataBag(BaseClass):
requirer_key: str
class MergedDataBag(ProviderDataBag, RequirerDataBag):
pass
merged_data = get_relation_data_as(
MergedDataBag, relation.data[self.app], relation.data[relation.app]
)
merged_data.requirer_key
merged_data.provider_key
The above code can be generalized to other kinds of merged objects, e.g. application and unit, and it can be extended to multiple sources beyond 2:
merged_data = get_relation_data_as(
MergedDataBag, relation.data[self.app], relation.data[relation.app], ...
)
Index
class BaseConfigModel
Description
Class to be used for defining the structured configuration options. None
Methods
BaseConfigModel. __getitem__( self , x )
Description
Return the item using the notation instance[key]. None
class TypedCharmBase
Description
Class to be used for extending config-typed charms. None
Methods
TypedCharmBase. config( self )
Description
Return a config instance validated and parsed using the provided pydantic class. None
def validate_params(cls)
Return a decorator to allow pydantic parsing of action parameters.
Arguments
Pydantic class representing the model to be used for parsing the content of the action parameter
Methods
validate_params. decorator( f )
def
write(
relation_data: RelationDataContent,
model: BaseModel
)
Write the data contained in a domain object to the relation databag.
Arguments
pointer to the relation databag
instance of pydantic model to be written
def
read(
relation_data,
obj
)
Read data from a relation databag and parse it into a domain object.
Arguments
pointer to the relation databag
pydantic class representing the model to be used for parsing
def
parse_relation_data(
app_model,
unit_model
)
Return a decorator to allow pydantic parsing of the app and unit databags.
Arguments
Pydantic class representing the model to be used for parsing the content of the app databag. None if no parsing ought to be done.
Pydantic class representing the model to be used for parsing the content of the unit databag. None if no parsing ought to be done.
Methods
parse_relation_data. decorator( f )
class RelationDataModel
Description
Base class to be used for creating data models to be used for relation databags. None
Methods
RelationDataModel. write( self , relation_data: RelationDataContent )
Write data to a relation databag.
Arguments
pointer to the relation databag
RelationDataModel. read( cls , relation_data: RelationDataContent )
Read data from a relation databag and parse it as an instance of the pydantic class.
Arguments
pointer to the relation databag
def get_relation_data_as(model_type)
Return a merged representation of the provider and requirer databag into a single object.
Arguments
pydantic class representing the merged databag
list of RelationDataContent of provider/requirer/unit sides